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background: English homophony

▶ heterographic homophones (Susanne Gahl, Berkeley)

time and thyme, wait and weight

▶ word-final s (Ingo Plag, Duesseldorf)

(singular on verbs, plural on nouns, genitive, contracted auxiliary,
stem-final segment, . . . )



affix homophony: English word-final s

Plag, I., Homann, J., & Kunter, G. (2017). Homophony and morphology:
The acoustics of word-final S in English. Journal of Linguistics, 53(1),
181–216.



phonetic detail of homophenes: English thyme and time

homophone-duration in English
(Gahl & Baayen, Language, 2024)



semantic support for form

S︸︷︷︸
embeddings

· G︸︷︷︸
linear mapping

= C︸︷︷︸
form vectors

given an estimate of G, we obtain predicted form vectors Ĉ

the SemanticSupportForm measure is the sum of the predicted
supports for the triphones of word i in ĉi

it provides an estimate of how precisely a word’s form can be
predicted from its embedding (meaning)



phonetic detail of homophones: English thyme and time

homophone-duration in English
(Gahl & Baayen, Language, 2024)



phonetic detail of homophenes: English thyme and time

homophone articulation in English and Mandarin (work in progress with
Sean Tseng, Zhexuan Li, Mirjam Ernestus, Louis ten Bosch)



challenging three classical axioms in linguistics

1. the arbitrariness of the sign (de Saussure)

English dog and French chien

2. the double articulation of language (Martinet)

▶ a sound system with its own calculus (phonology)
▶ a syntactic calculus operating with the units produced by the

phonological calculus

3. language as a symbolic system

the weaver model of Levelt and colleagues
takes these axioms as givens



challenges for the three axioms

1. the arbitrariness of the sign (de Saussure)

arbitrariness: the worst-case scenario for learning

2. the double articulation of language (Martinet)

there are remarkable isomorphies between
fine details of meaning and phonetic realization

3. language as a symbolic system

every abstraction comes with a cost

in what follows, I will show that, when these axioms are set aside, we can
make substantial progress with predicting the realization of tones in
conversational Mandarin



an L2 learner’s perspective on tones in Mandarin Chinese



tones in Mandarin Chinese



examples of pronunciations of xuexiao, ‘school’

▶ standard pronunciation

▶ normal pronunciation

▶ reduced pronunciation

(from Janice Fon’s corpus of conversational Taiwan Mandarin)

./audio/CHT_GY.TextGrid_學校_3.mp3
./audio/CHT_GY.TextGrid_學校_4.mp3
./audio/CJJ_GY.TextGrid_學校_3.mp3


why study Mandarin tones?

as a struggling L2 learner, I am bumping into discrepancies between

▶ the tones indicated by the pinyin transliteration
(and in the tones as realized in the Pleco dictionary)

▶ and the tones that are actually produced

example: 文章 wen2 chang1 (high-rise followed by high)

pleco dictionary app

octave upglide on wen

ninchanese app

level tone followed by a
second level tone that is a
fifth higher

./audio/wenzhangPlecoEdited.mp3
./audio/wenzhangNinchaEdited.mp3


why study Mandarin tones?

▶ to better understand what is going on with 文章 and many others

▶ hypotheses

1. Mandarin words have statistical tonal signatures

2. these tonal signatures are driven by words’ meanings



modeling pitch contours with GAMs

▶ the tokens analyzed here come from a dictionary (careful speech)

▶ we use the generalized additive model (GAM, Wood, 2017) to
obtain an estimate of the pitch contour for the pitch contours of
words sharing the same RF tone pattern



modeling pitch contour with GAMss

we decompose words’ pitch contours into

▶ a general smooth for the tone pattern (RF)

▶ word-specific smooths that present the deviations
from the general tone pattern (the ‘grand mean curve’)



wait a moment!

how tones are realized depends on lots of factors
that you are not taking into account!

▶ speech rate
▶ position in the utterance
▶ probability given preceeding and following word
▶ tone sandhi with adjacent words
▶ words’ segments
▶ gender
▶ speaker-specific habits



careful decomposition of pitch contours
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all tokens have, according to the dictionary, the rise-fall tone pattern



GAMs strongly support by-word wiggly random effects
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Mandarin words indeed seem to have their own tonal signatures

(53 types, 9496 tokens, Yu-Ying Chuang)



statistical evidence:
segmental components
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word form or word meaning

where does this ‘word superiority’ effect come from?

▶ is this a form effect (i.e., word = word form)?

▶ or is this a semantic effect (i.e., word = word meaning)?

if this is a semantic effect, word meaning should be a better predictor for
tone contours than word form



word senses

▶ we used contextualized embeddings (based on GPT-2) in
combination with a sense disambiguation algorithm to couple each
word token with a specific sense

▶ e.g., “school” as building,
as opposed to “school” as organization

▶ a GAM with a factor smooth for sense instead of word provides an
improved fit to the data



word senses

▶ sense labels are crude

▶ you never know where one sense ends and the next one begins
(Adam Kilgarrif)

▶ can we improve on discrete word senses?



micro-analysis of form and meaning:
replacing senses by contextualized embeddings

form:

the pitch contour of a given token in the spoken corpus

meaning:

the contextualized embedding calculated using GPT-2 for this token
given its context in the Corpus of Spontaneous Taiwan Mandarin



the contextualized embeddings seem decent



given vectors for form and meaning,
we can set up a mapping between them!

S︸︷︷︸
contextualized embeddings

· G︸︷︷︸
linear mapping

= C︸︷︷︸
pitch contour vectors

3,778 tokens (representing 51 word types)
50-dimensional pitch vectors
768-dimensional contextualized embeddings



prediction accuracy
prediction for a token is taken to be accurate when the nearest neighbor
pitch contour belongs to the same word type (using Euclidean distance)

the probability of a CE and pitch vector belonging to the same word type
by chance is 0.038

permutation baselines are 3.7% for training and 3.5% for testing



predicting word-specific tone contours

if we take the centroid of the embed-
dings of a word, and map this cen-
troid embedding onto a pitch con-
tour using our mapping G, we should
get the word-specific contour identi-
fied by the GAM (general curve +
word signature curve)



GAM-based and DLM-based predicted pitch contours
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GAMM Prediction (LDL)



follow-up studies

1. Mandarin 2-syllable words, all 20 tone patterns

2. Mandarin 1-syllable words

3. English left-stressed 2-syllable words



study (1) all 20 tone patterns

▶ thus far, we have only considered the rise-fall tone pattern

▶ we now extend our dataset and include words from all 20 tone
patterns that are possible for bisyllabic words

▶ prediction:

when we consider all 20 tone patterns together, and take the
centroid embedding for each tone pattern, we will obtain the
tone-pattern specific pitch contours identified by a GAM that is
given access to all tone patterns



20 tone patterns predicted from the corresponding
semantic centroids in embedding space

(988 words, 4283 tokens, Yu-Xin Lu)



comparison with lab speech (Xu 1997)



the variable importance of tone pattern is modest

the difference in AIC for models with and without tone pattern as
predictor range from 3 to 40 (assessed for 4 frequent tonal contexts)

the corresponding differences in AIC for models with and without
word as predictor range from 221 to 595



study (2): monosyllabic words with selected vowels

(63 types, 3824 tokens, Xiao-Yun Jin)



study (3) English two-syllable left-stressed words

Buckeye corpus

(72 types, 4724 tokens, Yu-Ying Chuang, Melanie Bell)
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effects are more modest for English

accuracy

model−based and centered

token−wise
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conclusions

▶ pitch and meaning in context are deeply entangled

▶ (contextualized) embeddings are very context-dependent,
they soak up all kinds of subtle co-occurrence information at the
word (or subword) level

▶ the pitch contours of word tokens are also very context-dependent:
cf. tonal co-articulation, the effects of speech rate, emotion, position
in the sentence, . . .

▶ the present results suggest that there is considerable isomorphy
between the form space and the semantic space



discussion

▶ the evidence for the entanglement of phonetics and semantics helps
explain why current AI/NLP/LLMs are so successful

▶ abstract units (phonemes, morphemes, even ‘words’) are harmful for
both machine learning and, I propose, also for human subliminal,
automatized error-driven learning as well:

▶ abstraction (e.g., 20 Mandarin tones, the same forms for
“homophones”) inevitably goes hand in hand with loss of detail that,
however, is part and parcel of language experience and human
cognition



general discussion

the challenge for linguistic theory for the coming years is to better
understand how the fine details of form and meaning interact, at
many levels, including

▶ a descriptive level (cf. English plurals and homophones)

▶ a high-level computational level (cf. modeling Mandarin tone)

▶ a cognitive-biological level (exploiting, for instance, the efficiency
afforded by spiking neurons)

the challenge for applied linguistics is how to make use of these
insights to improve L2 acquisition of tone



the question in the title of this talk:
how can it be so simple?

we observe linear mapping from CEs to F0 contours in normalized time

▶ does it work because we map from a high dimensional space (768)
into a low dimensional space (50)?

▶ does it work because CEs are additive?

▶ does it work because of parallel contextual conditioning?

▶ is the mapping linear because linearity is more energy-efficient than
non-linearity, offering evolutionary and biological advantages?


