Better than expected: The dynamics of prediction-based processing in younger and older adults' language comprehension

Kara D. Federmeier

Department of Psychology, Neuroscience Program,
Beckman Institute for Advanced Science and Technology
University of Illinois

Methods

Biological basis of the EEG

Derivation of the ERP

Event related potential (ERP)

Visual processing timeline

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak ~400 ms); stable latency
- amplitude reduced by factors that ease semantic access

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak ~400 ms); stable latency
- amplitude reduced by factors that ease semantic access

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak ~400 ms); stable latency
- amplitude reduced by factors that ease semantic access

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak ~400 ms); stable latency
- amplitude reduced by factors that ease semantic access

Sentence Final Three Modalities

Congruent Incongruent

Meaning access out of context

Perceptual processing

RECOGNTION

Semantic processing

N400 latency is highly stable

- The N400 does not change its timing as a function of repetition, priming, frequency, familiarity, noise level, task demands, goals, attentional states, etc.
- Primary determiner of N400 latency is age.
 - Latency decreases across childhood
 - Latency increases across adulthood (1-2 ms/year)
- Semantic access is yoked to time, not to recognition.

Neighborhood density and meaningfulness

Low N

Laszlo & Federmeier 2011

Revisiting meaning access out of context

Perceptual processing

RECOGNTION

Semantic processing

Revisiting meaning access out of context

Perceptual processing

Semantic processing

RECOGNTION

Visual processing timeline

Building a message over time

The N400, an index of semantic processing, decreases in amplitude across a congruent sentence.

— 13th+ word

— 10th–12th word

- · - 4th–6th word

······ 2nd-3rd word

Congruent: She kept checking the oven because the cake seemed to be taking an awfully long time to bake.

Revisiting the incremental effects of context on word processing: Evidence from single-word event-related brain potentials

BRENNAN R. PAYNE, a,b CHIA-LIN LEE, d and KARA D. FEDERMEIER a,b,c

Traditional ERP: Average timeseries over multiple trials (to create ERP), then measure mean amplitude within a latency band.

Item-Level: Measure mean amplitude within a latency band on each trial. Use statistical model to average across trials. Mean information is identical, but this approach recovers item-to-item variability in mean amplitudes

N400 orthographic neighborhood effect

---- High N
---- Mid N
---- Low N

... remains constant across word position in all contexts

OLD 20: Mean distance to 20 nearest neighbors

N400 frequency effect

... is eliminated as contextual constraint builds

Prediction of semantics (reading)

High Constraint:

He caught the pass and scored another touchdown.

There was nothing he enjoyed more than a good game of . . .

Prediction of semantics (reading)

High Constraint:

He caught the pass and scored another touchdown.

There was nothing he enjoyed more than a good game of . . .

Prediction of semantics (listening)

monopoly. (between)

baseball. (within)

football. (expected)

High Constraint:

He caught the pass and scored another touchdown.

There was nothing he enjoyed more than a good game of . . .

Orthographic effects of prediction

The genie was ready to grant his third and final WISH DISH

Orthographic effects of prediction

Laszlo & Federmeier 2009

ERP correlates of prediction

Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009

Visual processing timeline

ERP correlates of prediction

Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009

ERP correlates of prediction

— Strongly Constrained ---- Weakly Constrained

(Also can see effects of prediction on the N1, the N300, the PMN, etc.)

-- [UNEXPECTED]

----- [UNEXPECTED but RELATED]

—— [EXPECTED]

Wlotko & Federmeier, 2007; Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009

When predictions go wrong ...

When the two met, one of them held out his

HAND

BADGE.

Strongly Constrained

Strongly expected

Unexpected

Sandy always wished she'd had a

DOG

BADGE.

Weakly Constrained

Weakly expected

Unexpected

Consequences of prediction violation: frontal positivity

"When the two met, one of them held out his badge. (hand)"

Consequences of prediction violation: frontal positivity

"When the two met, one of them held out his

badge. (hand)"

Two effects: also a frontal negativity to strongly constrained expected items ...

"When the two met, one of them held out his

badge. (hand)"

ERP correlates of prediction

Wlotko & Federmeier, 2007; Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009; Federmeier et al., 2007

Downstream effects of predicting

The jeweler was asked if he would examine the ring's huge ...

N400 repetition effect

Repeated
Unrepeated

diamond?

crack.

Design

Seen in strong constraint

The jeweler was asked if he would examine the ring's huge <u>crack</u>.

The mother of the tall guard had the same accent.

There were a lot of old boxes stored in the attic.

He started looking for the diamond.

Seen in weak constraint

The guy was still wondering if anyone had noticed the big diamond.

The mother of the tall guard had the same accent.

There were a lot of old boxes stored in the attic.

He started looking for the diamond.

Not previously seen

The mother of the tall guard had the same accent.

There were a lot of old boxes stored in the attic.

He started looking for the diamond.

Predictions elicit repetition effects

Design

Seen in strong constraint

The jeweler was asked if he would examine the ring's huge diamond.

The mother of the tall guard had the same accent.

There were a lot of old boxes stored in the attic.

He started looking for the diamond.

Seen in weak constraint

The guy was still wondering if anyone had noticed the big diamond.

The mother of the tall guard had the same accent.

There were a lot of old boxes stored in the attic.

He started looking for the diamond.

Not previously seen

The mother of the tall guard had the same accent.

There were a lot of old boxes stored in the attic.

He started looking for the diamond.

Predictions diminish stimulus encoding

Hemispheric differences

ERP correlates of prediction

Wlotko & Federmeier, 2007; Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009; Federmeier et al., 2007

Hemispheric differences in prediction

ERP correlates of prediction

---- Strongly Constrained
---- Weakly Constrained

----- [UNEXPECTED but RELATED]

—— [EXPECTED]

----- Strongly Constrained
------ Weakly Constrained

Wlotko & Federmeier, 2007; Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009; Federmeier et al., 2007

Hemispheric differences in prediction

He caught the pass and scored another touchdown.

There was nothing he enjoyed more than a good game of ...

Federmeier & Kutas, 1999

ERP correlates of prediction

Wlotko & Federmeier, 2007; Federmeier & Kutas, 1999; Laszlo & Federmeier, 2009; Federmeier et al., 2007

LH RH

(dominant for speech)

PARLO (Federmeier 2007): Production Affects Reception in Left Only

LH (dominant for speech)

RH

- engages predictive processing mechanisms
- benefits from even weak context
- readily recruits processes to select, revise, and reorder language information

- maintains veridical representation of the stimulus stream
- engages imagery in response to concrete language
- flexibly deals with some kinds of unexpected information, such as when processing jokes (e.g., Coulson & Williams, 2005)

PARLO (Federmeier 2007): Production Affects Reception in Left Only

LH (dominant for speech)

RH

- engages predictive processing mechanisms
- benefits from even weak context
- readily recruits processes to select, revise, and reorder language information

- maintains veridical representation of the stimulus stream
- engages imagery in response to concrete language
- flexibly deals with some kinds of unexpected information, such as when processing jokes (e.g., Coulson & Williams, 2005)

PARLO (Federmeier 2007):
Production Affects Reception in Left Only

Aging and the word position effect

Payne & Federmeier in prep

Payne & Federmeier in prep

YOUNG ADULTS: N400 frequency effect

Aging effects on prediction (word by word reading)

He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of ...

chess Between Category Violations
baseball ----- Within Category Violations

football — Expected Exemplars

Aging effects on prediction (word by word reading)

He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of ...

chess ———— Between Category Violations
baseball ——— Within Category Violations
football ——— Expected Exemplars

Aging effects on prediction (listening to natural speech)

He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of ...

OLDER ADULTS

Strongly constrained unexpected:
When the two met, one of them held out his BADGE (HAND).

Weakly constrained unexpected:
Sandy always wished that she'd had a
BADGE (DOG).

Wlotko et al., 2012

Diminished stimulus encoding when predicting

Frontal NEGATIVITY observed in both processing "modes"

Frontal NEGATIVITY observed in both processing "modes"

Young Adults

Older Adults

Making prediction less useful ...

When the two met, one of them held out his

HAND

BADGE. Strongly Constrained

Sandy always wished she'd had a

DOG

BADGE.

Weakly Constrained

Making prediction less useful ...

Related and Unrelated Unexpected Endings were carefully matched for cloze

When the two met, one of them held out his

HAND / FINGERS / BADGE. Strongly Constrained

Sandy always wished she'd had a

DOG / PUPPY / BADGE.

Weakly Constrained

Flexible strategies

Strongly constrained unexpected:
When the two met, one of them held out his
BADGE (HAND).

Weakly constrained unexpected:
Sandy always wished that she'd had a
BADGE (DOG).

Flexible strategies

Wlotko et al., 2012; Wlotko et al., in prep

Low expected uncertainty

High expected uncertainty

- Semantic access involves synchronous activity across a distributed, multimodal long term memory network.
- Access is triggered in a delimited time window with respect to sensory input, and not by a functional outcome.

- The brain processes meaning information incrementally, building higher-order meaning representations as context accrues.
- Incremental processing can include prediction – i.e., the preactivation of likely upcoming information via top-down connectivity.
- However, (this kind of) prediction is not ubiquitous, and becomes less likely with age.

- Older adults remain good comprehenders.
- However, they use substantively different processing mechanisms from young adults, with different strengths and weaknesses.
- Meaning comprehension can and does arise from multiple processing mechanisms/modes
 -- even in young adults.

Comprehension is flexible and multifaceted, which is what allows us to find meaning in time ... over a lifetime.

The Cognition and Brain (CAB) Lab

(past and present)

Jeremy Boyd **Iason Coronel** Melissa Coffel Danielle Dickson Karen Fyans Simon Fisher-Baum Daniel Frost Laura Giffin Caterina Gratton Resh Gupta Angela Gutchess Deborah Hannula Hsu-Wen Huang Ryan Hubbard Priya Kandhadai

Daniel Kleinman

Manoj Kumar Charlotte Laguna Melinh Lai Sarah Laszlo Chia-Lin Lee Michelle Leckey Allison Letkiewicz Heather Lucas Laura Matzen Aaron Meyer Katie Mimnaugh Shukhan Ng Li-Hsin Ning Brennan Payne **loost Rommers** Cybelle Smith

Mallory Stites
Joel Voss
Edward Wlotko
Si On Yoon
and many great
undergraduates

