Better than expected:

The dynamics of prediction-based processing in younger and older adults' language comprehension

Kara D. Federmeier
Department of Psychology, Neuroscience Program, Beckman Institute for Advanced Science and Technology University of Illinois

Methods

Biological basis of the EEG

Derivation of the ERP

Event related potential (ERP)

Visual processing timeline

Input type differentiation:
Faces versus objects
Strings versus objects Retinotopic coordinates NO effects of regularity or familiarity

Position-independent "structural" effects:
Orthographic similarity effects
View-"independent" face priming
Priming of structurally similar objects
NO effects of familiarity/semantics/association

Access to long term, multimodal memory:
semantics
associations
knowledge
pragmatics
Attempted even for unfamiliar, irregular stimuli

The N400

N400 effect

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak $\sim 400 \mathrm{~ms}$); stable latency
- amplitude reduced by factors that ease semantic access

The N400

First presentation

N400 effect

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak $\sim 400 \mathrm{~ms}$); stable latency
- amplitude reduced by factors that ease semantic access

The N400

Low frequency

High frequency

N400 effect

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak $\sim 400 \mathrm{~ms}$); stable latency
- amplitude reduced by factors that ease semantic access

The N400

- negative-going voltage deflection; part of the normal response to meaningful stimuli of all types in a wide variety of tasks
- 250-550 ms (peak $\sim 400 \mathrm{~ms}$); stable latency
- amplitude reduced by factors that ease semantic access

The $\mathrm{N}_{4} \mathrm{OO}$

Sentence Final Three Modalities

Unprimed

Meaning access out of context

Perceptual processing

RECOGNTION

Semantic processing

N400 latency is highly stable

- The N400 does not change its timing as a function of repetition, priming, frequency, familiarity, noise level, task demands, goals, attentional states, etc.
- Primary determiner of N400 latency is age.
- Latency decreases across childhood
- Latency increases across adulthood (1-2 ms/year)
- Semantic access is yoked to time, not to recognition.

Neighborhood density and meaningfulness

－ー一ー一 High N（MAP，LAR）
．．．．．．．．．．．．．．．Mid N（FAN）
Low N（SKI，BBQ，NGR）

Laszlo \＆Federmeier 2011

Revisiting meaning access out of context

Perceptual processing

RECOGNTION

Semantic processing

Revisiting meaning access out of context

Perceptual processing

Semantic processing

Visual processing timeline

Input type differentiation:
Faces versus objects
Strings versus objects Retinotopic coordinates NO effects of regularity or familiarity

Position-independent "structural" effects:
Orthographic similarity effects
View-"independent" face priming
Priming of structurally similar objects
NO effects of familiarity/semantics/association

Access to long term, multimodal memory:
semantics
associations
knowledge
pragmatics
Attempted even for unfamiliar, irregular stimuli

Building a message over time

The N400, an index of semantic processing, decreases in amplitude across a congruent sentence.

- 13th+ word
-- 10th-12th word
-.- 4th-6th word
......... 2nd-3rd word

Congruent: She kept checking the oven because the cake seemed to be taking an awfully long time to bake.

Revisiting the incremental effects of context on word processing: Evidence from single-word event-related brain potentials BRENNAN R. PAYNE, ${ }^{\text {a,b }}$ CHIA-LIN LEE, ${ }^{\text {d }}$ AND KARA D. FEDERMEIER ${ }^{\text {a,b,c }}$

Ongoing EEG

Traditional ERP: Average timeseries over multiple trials (to create ERP), then measure mean amplitude within a latency band.

Item-Level: Measure mean amplitude within a latency band on each trial. Use statistical model to average across trials.
Mean information is identical, but this approach recovers item-to-item variability in mean amplitudes

Open Class Congruent

Context
Central

Parietal

- Congruent
- Syntactic Prose
- Random

Word Position

$$
\begin{array}{cc}
-1+2 & -9+10 \\
-3+4 & -11+12 \\
-5+6 & -13+14 \\
-7+8 & -15+16
\end{array}
$$

Random: The court the she spring making missing awfully art poor to because an to be went began bake.

Syntactic Prose: She went missing the spring because the court began to be making an awfully poor art to bake.

Congruent: She kept checking the oven because the cake seemed to be taking an awfully long time to bake.

Payne et al., 2015

N400 orthographic neighborhood effect

----- High N
.............. Mid N
Low N
... remains constant across word position in all contexts

OLD 20: Mean distance to 20 nearest neighbors

N40o frequency effect
—— Frequent
............. Less frequent
... is eliminated as contextual constraint builds

Prediction of semantics (reading)

High Constraint:
He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of . . .

Prediction of semantics (reading)

High Constraint:
He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of . . .

Prediction of semantics (listening)

monopoly. (between)
baseball. (within)
football. (expected)

High Constraint:
He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of . . .

Orthographic effects of prediction

The genie was ready to grant his third and final WISH DISH

Orthographic effects of prediction

HORM
CLAM
The genie was ready to grant his third and final WISH DISH
WUSH
Laszlo \& Federmeier 2009

ERP correlates of prediction

Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009

Visual processing timeline

Input type differentiation:
Faces versus objects
Strings versus objects Retinotopic coordinates NO effects of regularity or familiarity

Position-independent "structural" effects:
Orthographic similarity effects
View-"independent" face priming
Priming of structurally similar objects
NO effects of familiarity/semantics/association

Access to long term, multimodal memory:
semantics
associations
knowledge
pragmatics
Attempted even for unfamiliar, irregular stimuli

ERP correlates of prediction

Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009

ERP correlates of prediction

\cdots [UNEXPECTED]
------ [UNEXPECTED but RELATED]

- [EXPECTED]
- Strongly Constrained
------ Weakly Constrained
(Also can see effects of prediction on the N_{1}, the $\mathrm{N}_{3} 00$, the PMN, etc.)

Wlotko \& Federmeier, 2007; Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009

When predictions go wrong

When the two met, one of them held out his

HAND
Strongly expected
'BADGE.
Strongly Constrained
Unexpected

Sandy always wished she'd had a

DOG
Weakly expected

BADGE. Unexpected

Weakly Constrained

Consequences of prediction violation: frontal positivity

"When the two met, one of them held out his badge. (hand)"

Federmeier et al 2007

Consequences of prediction violation: frontal positivity

"When the two met, one of them held out his
badge. (hand)"

Two effects: also a frontal negativity to strongly constrained expected items ...

"When the two met, one of them held out his
badge. (hand)"

ERP correlates of prediction

\cdots [UNEXPECTED]
------ [UNEXPECTED but RELATED]
Plausible but unexpected words

Strongly Constrained
----- Weakly Constrained

- Strongly Constrained
......Weakly Constrained

Wlotko \& Federmeier, 2007; Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009; Federmeier et al., 2007

Downstream effects of predicting

The jeweler was asked if he would examine the ring's huge ...

diamond?
crack.

Design

Seen in strong constraint

The jeweler was asked if he would examine the ring's huge crack.
The mother of the tall guard had the same accent.
There were a lot of old boxes stored in the attic.
He started looking for the diamond.

Seen in weak constraint
The guy was still wondering if anyone had noticed the big diamond.
The mother of the tall guard had the same accent.
There were a lot of old boxes stored in the attic.
He started looking for the diamond.

Not previously seen

The mother of the tall guard had the same accent.
There were a lot of old boxes stored in the attic.
He started looking for the diamond.

Predictions elicit repetition effects

Rommers \& Federmeier in prep

Design

Seen in strong constraint

The jeweler was asked if he would examine the ring's huge diamond.
The mother of the tall guard had the same accent.
There were a lot of old boxes stored in the attic.
He started looking for the diamond.

Seen in weak constraint
The guy was still wondering if anyone had noticed the big diamond.
The mother of the tall guard had the same accent.
There were a lot of old boxes stored in the attic.
He started looking for the diamond.

Not previously seen

The mother of the tall guard had the same accent.
There were a lot of old boxes stored in the attic.
He started looking for the diamond.

Predictions diminish stimulus encoding

Rommers \& Federmeier in prep

Hemispheric differences

ERP correlates of prediction

Strongly Constrained
----- Weakly Constrained

\cdots [UNEXPECTED]
------ [UNEXPECTED but RELATED]

- [EXPECTED]

Wlotko \& Federmeier, 2007; Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009; Federmeier et al., 2007

Hemispheric differences in prediction

Wlotko \& Federmeier, 2007

ERP correlates of prediction

Plausible but unexpected words

Strongly Constrained
------ Weakly Constrained

- Strongly Constrained
.....Weakly Constrained

Wlotko \& Federmeier, 2007; Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009; Federmeier et al., 2007

Hemispheric differences in prediction

He caught the pass and scored another touchdown. There was nothing he enjoyed more than a good game of ...

ERP correlates of prediction

Strongly Constrained
----- Weakly Constrained

\cdots [UNEXPECTED]
------ [UNEXPECTED but RELATED]

- [EXPECTED]

Plausible but unexpected words

Wlotko \& Federmeier, 2007; Federmeier \& Kutas, 1999; Laszlo \& Federmeier, 2009; Federmeier et al., 2007

LH

(dominant for speech)

PARLO (Federmeier 2007):
Production Affects Reception in Left Only

- maintains veridical representation of the stimulus stream
- engages imagery in response to concrete language
- flexibly deals with some kinds of unexpected information, such as when processing jokes (e.g., Coulson \& Williams, 2005)

PARLO (Federmeier 2007):
Production Affects Reception in Left Only

- maintains veridical representation of the stimulus stream
- engages imagery in response to concrete language
- flexibly deals with some kinds of unexpected information, such as when processing jokes (e.g., Coulson \& Williams, 2005)

PARLO (Federmeier 2007):
Production Affects Reception in Left Only

Aging and the word position effect

Payne \& Federmeier in prep

Payne \& Federmeier in prep

YOUNG ADULTS: N400 frequency effect

OLDER ADULTS

Payne \& Federmeier in prep

Aging effects on prediction (word by word reading)

He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of ...
chess-.... Between Category Violations
baseball ----. Within Category Violations
football - Expected Exemplars

Aging effects on prediction (word by word reading)

Aging effects on prediction (listening to natural speech)

YOUNGER ADULTS

He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good game of ...
chess-..... Between Category Violations
baseball ---- Within Category Violations
football -Expected Exemplars

OLDER
ADULTS

Federmeier et al., 2002

Young

Strongly constrained unexpected:
When the two met, one of them held out his BADGE (HAND).

Weakly constrained unexpected:
Sandy always wished that she'd had a BADGE (DOG).

Wlotko et al., 2012

Diminished stimulus encoding when predicting

Frontal NEGATIVITY observed in both processing "modes"

YOUNGER ADULTS

SCU vs WCU

Strongly Constraining, Expected (SCE)
Strongly Constraining. Unexpected (SCU)

OLDER ADULTS

Weakly Constraining, Expected (WCE)

Weakly Constraining,
Unexpected (WCU)

Frontal NEGATIVITY observed in both processing "modes"

Young Adults

Unexpected vs Moderately Strong Constraint ($600-900 \mathrm{~ms}$)

Older Adults

Making prediction less useful ...

When the two met, one of them held out his

HAND
'BADGE. Strongly Constrained

Sandy always wished she'd had a

DOG
BADGE.
Weakly Constrained

Making prediction less useful ...

Related and Unrelated
Unexpected Endings were
carefully matched for cloze
When the two met, one of them held out his
HAND / FINGERS / BADGE. Strongly Constrained

Sandy always wished she'd had a

DOG / PUPPY / BADGE.
Weakly Constrained

Flexible strategies

Young

PREFRONTAL

frontal positivity π

When the two met, one of them held out his BADGE (HAND).

Weakly constrained unexpected:
Sandy always wished that she'd had a BADGE (DOG).

Flexible strategies

Young

Young - w/ Related Endings

Reading for
Comprehension

Reading for Comprehension (after Related)

Young - with Related Endings; Lexical Decision Task

frontal positivity 7

$-$
$5 \mu \mathrm{~V}$
$0 \quad 200400600800 \mathrm{~ms}$
Strongly constrained unexpected:
When the two met, one of them held out his BADGE (HAND).

REPLICATION WITHIN A SINGLE SESSION
Weakly constrained unexpected:
Sandy always wished that she'd had a BADGE (DOG).
Wlotko et al., 2012; Wlotko et al., in prep

Low expected uncertainty

High expected uncertainty
High ACh

Conclusions

- Semantic access involves synchronous activity across a distributed, multimodal long term memory network.
- Access is triggered in a delimited time window with respect to sensory input, and not by a functional outcome.

Conclusions

- The brain processes meaning information incrementally, building higher-order meaning representations as context accrues.
- Incremental processing can include prediction - i.e., the preactivation of likely upcoming information via top-down connectivity.
- However, (this kind of) prediction is not ubiquitous, and becomes less likely with age.

Conclusions

- Older adults remain good comprehenders.
- However, they use substantively different processing mechanisms from young adults, with different strengths and weaknesses.
- Meaning comprehension can and does arise from multiple processing mechanisms/modes -- even in young adults.

Conclusions

Comprehension is flexible and multifaceted, which is what allows us to find meaning in time ... over a lifetime.

The Cognition and Brain (CAB) Lab

(past and present)

Jeremy Boyd
Jason Coronel
Melissa Coffel
Danielle Dickson
Karen Evans
Simon Fisher-Baum
Daniel Frost
Laura Giffin
Caterina Gratton
Resh Gupta
Angela Gutchess
Deborah Hannula
Hsu-Wen Huang
Ryan Hubbard
Priya Kandhadai
Daniel Kleinman

Manoj Kumar
Charlotte Laguna
Melinh Lai
Sarah Laszlo
Chia-Lin Lee
Michelle Leckey
Allison Letkiewicz
Heather Lucas
Laura Matzen
Aaron Meyer
Katie Mimnaugh
Shukhan Ng
Li-Hsin Ning
Brennan Payne Joost Rommers
Cybelle Smith

Mallory Stites
Joel Voss
Edward Wlotko
Si On Yoon
and many great undergraduates

Funding from the National Institute on Aging and the McDonnell Foundation

