SEMESTER B 2017-2018

LT 4254
PSYCHOLINGUISTICS OF READING

To what extent does the language proficiency of the L2 English speakers affect the Pun Processing in Psycholinguistic perspectives?

GROUP 4
LAM Wai Kit, Ricky
LEE Oi Yee, Michelle
MAN Yi Ching, Clarice
TSE Ka Fai, Byron
WONG Zoi Tung, Natalie

CONTENT

- INTRODUCTION
- LITERATURE REVIEW
- PREDICTIONS AND HYPOTHESIS
- METHODOLOGY
- EXPERIMENTS
- LIMITATIONS & IMPROVEMENT
- IMPLICATION & CONCLUSION
- REFERENCE

Introduction

- Puns
 - The verbal contexts with an existence of intentional exploitation of phonetic processes
 - Suggest multi-meanings simultaneously (Guidi, 2012)
 - Words containing 2 meanings with 1 being implic
 - Required ambiguity processings
- Types of puns
 - Homophonic pun,
 - Homographic pun,
 - > Homonymic pun,
 - Compound
- How speakers perceived ambiguous words?
 - Eye-tracking experiment
- How the brain contributes to the response of L2 English speakers in different language proficiency?
 - EEG test (N400)

Literature Review

"Language Awareness and Comprehension through Puns among ESL learners" ---Teresa Lucas, 2005

Definitions and Key Features of Puns

- A pun is a play on words which conducts a humorous effect
 - \succ (1) By using a word with two or more meanings
 - > (2) By using similar sounding words with different meanings. (Literacy Device)
- Puns are verbal contexts, including an intentional exploitation of phonetic processes
- To reflect two meanings simultaneously (Guidi, 2012).
- Puns rely on the effect on correlating distinct meanings in linguistics form
- Aims at achieving and creating diverse structural and lexical means
- Puns are mostly based on metaphors
- Puns also based on perfect homography / homography (Solska,2012)
 - Only work in texts in written form
 - Common in advertisement

Objectives

- Examined how learner-generated attention to the aspects of language e.g. totality of form, meaning and use generated better comprehension
 - Low-advanced and High-advanced English second language(ESL) learners
 - A collaborative participation task involving in understanding the ambiguity of puns

Results

- The task deciphering 2 meanings:
 - Faciliated participants to consider the aspect of language
 - > 35 / 40: successful incidences:
 - Remaining 5 failed cases:
 - No attention to language occurred when scneario 3 happened

Discussion

- Learners achieved greater comprehension:
 - Collaborative dialogues between participants
 - Metalinguistics awareness
 - With focus on phonological, morphological, syntactical and lexical aspects.
- General Increase in Comprehension:
 - Remarkable understanding in puns when related to the linguistic aspect of the ambiguity
 - Opening dialogues: 28.75% → Follow-up interview: 91.25%
 - Incapability in understanding puns corresponds to absence of LRE
 - 4 /5 cases
 - Reasons:
 - Usage of examples of language
 - Language play primary function of language
 - Children naturally engage in language play or language development
 - Language play creative function of language
 - Deal with ambiguity on a context basis

Prediction & Hypothesis

L2 English learners	Response	
Lower proficiency	a longer response time in pun processing	
Higher proficiency	a shorter response time in pun processing	

Eye-movement measurement

- Good L2 learners may have more forward sacaades, less fixations
- > Poor L2 learners may have more **fixations**, **regressions**, longer **first-pass**

EEG Measurements

- Good L2 learners may elicit a smaller N400 and a faster brain response
- Easier in retrieving meanings
- Less energy required for processing
- Poor L2 learners may elicit a larger N400 and a slower brain response
 - Harder in retrieving meanings
 - More energy required for processing

<u>Methodology:</u>

- Two stimulus-response experiments.
 - Eye-tracking test
 - EEG test
- By comparing the results of the above experiments...
 - > It shows how much language proficiency affects one's understanding of pun.
- Target: Student aged 13-17, secondary school, English as L2
 - Reason: Youngsters will do better than adults in second language learning. (Steinberg, 2001) In terms of:
 - Natural Input, Memory, Induction, Motor skills, Explicative processing
- Inviting 60 participants, classified them with a English Proficency Test
 - First 40%: Group A (High), Mid 30%: Group B (Mid), Bottom 30%: Group C (Low)
 - Reason: To compare whether language proficiency affects the understanding of pun.

Details about Proficienny Test:

- Time allowed: 30-min
- Consists of 10 questions each of them with a non-pun test word. (No multiple choices)
- Test words are designed with reference to semantic network model.
 (Quillian, 1969)
- Test words are all subordinates. Participant will be asked to write down the corresponding superordinate to show their understanding to the word.
- 1 point will be given to correct answer.
- To answer the questions properly, the participants are required to have certain proficiency in lexical and syntactical comprehension, because a word can be semantically different in various contexts.

Sample of the proficiency test:

Qu <mark>esti</mark> on no.	Sentences			
1	My mother advised me to eat an apple everyday.			
2	I forgot to bring an eraser yesterday.			
3	Please switch off the mobile phone before coming in.			
4	It is time to but a new sofa at our home.			
5	I would prefer the yellow t-shirt.			
6	Can we wear high heels in the graduation dinner?			
7	Dogs and cats are both obedient in characters.			
8	I go to school by bus everyday.			
9	Orange juice is healthy and tasty.			
10	I love playing basketball .			

Experiment Materials

Don't make it **tear** or I will be mad at you.

- tear /teər/ [To damage by splitting] VS tear /tɪər/ [To cry] HOMOGRAPHIC
 - Orthographically same, different semantically and phonologically
 - 2 Seven days without laughter make one **weak.**
- weak /wik/ [To be poor physically] VS week /wik/ [A period of 7 days] HOMOPHONIC
 - > Phonologically same, but different semantically and orthographically.
 - I used to be a banker, but I lost **interest.**
- Interest /Interist/ [A feeling of being interested] VS
 Interest /Interist/ [An income earned by keeping deposit in a bank]
 HOMONYMIC
 - "Interest" of the above are the same phonologically and orthographically, but the are different semantically.

Experiment 1: Eye-tracking

- Facts about reading a pun:
 - Longer processing time means harder understanding of a pun.
 - First fixation: 4
 - First-pass: 4+5+6
 - Second-pass: 8
 - Total time = 23 (4+5+6+8)
- Since "flies" is the problematic word (pun), we expect its fixation time is longer.

12

Eye-movement measurements:

- By using Eye-tracker (Harley, 2008)
 - lt can detect pupil and corneal reflection.
 - > It can map the eye movements to eye fixation positions.
- Eye-movement map 1:

- The above numbers refer to one's direction of reading a sentence.
 - During the problematic word (Pun), participant may move backward (regression) to re-analyze "flies".
 - An indication of misunderstanding of some parts of a text. (Steinberg, 2001)

Con't

Eye-movement map 2:

- The numbers of the above refer to one's direction of reading a sentence.
 - During the problematic word (pun), participant may jump (saccade) the word that is highly predictable.
 - An indication of understanding of some parts of a text. (Steinberg, 2001)

Comparison

- Given that Group A, B and C are different in terms of the proficiency in English,
 - Comparing their frequency of...
 - Fixation
 - Regression
 - Saccade
- The results can show whether **language proficiency** is a factor of pun's understanding.

Assumption:

- Participant with higher English proficiency tends...
 - To stay in a word shorter.
 - To jump the words.
 - Not to move backwards.
- Participant with lower English proficiency tends...
 - To stay in a word longer.
 - > Not to jump the words.
 - More often to move backwards.

	Fixation times	Regression times	Saccade times
Group A	Lower than B & C	Lower than B & C	Higher than B & C
Group B	Higher than A, but lower than C	Higher than A, but lower than C	Higher than C, but lower than A
Group C	Higher than A & B	Higher than A & B	Lower than A & B

Experiment 2: EEG Test

- EEG → Electroencephalography
 - > A tool to record eletrical signal from the brain
- Use several electrodes attached to scalps
 - To detect electric signals and therefore analyze brain activity

Electroencephalogram (EEG)

Con't

- According to Dawson in 1947:
 - "There should be a systematic response of brain to an event"
- By using EEG, we can retrieve ERP (Event-related Potentials)
 - An average value after many trials from EEG experiment.
 - Observing one of the compents: N400
- N400
 - A negative evoked response with its peak around 400ms after stimulus onset
 - ➤ Related to Semantics → Word meaning matters

How to conduct an EEG Test?

- Paricipants will read the 3 test materials
 - Sentence will be placed in middle to avoid excessive eye movement
- Electrodes on the scalp record brain signals when reading

After processing and averaging, N400 for analysis

Seven days without laughter make one weak.

2

What can N400 shows?

- As N400 is an index to show human's reaction towards words they have read in semantic aspect:
 - The values can also reflect the time used for giving response/ understanding the meaning of words
 - ➤ Higher → Predictable, Familiar
 - Easy to understand, shorter time
 - Vice versa
 - Comparison can be made

Assumption & Comparison:

After participants are divided into 3 groups and conducted experiments, we assume that:

	Proficiency	N400 Level	Time Used
Group A	Highest	Lowest	Least
Group B	Middle	Middle	Average
Group C	Lowest	Highest	Most

Limitations and Improvement

Grouping of participants

- What is the standard of the boundary? (40%, 30%, 30%)
- May not reflect the real language proficiency (Self-decided classification)
- Improvement:
 - Percentage grouping → Linear regression
 - Rank the participants into 11 level/section (Based on the score: 0 to 10)
 - Draw a scatter plot graph to see how the comprehensibility matches the language proficiency of the participants in each level
 - Make the whole comparison and analysis and find out whether our hypothesis is proved.

Length of test materials & Position of target words

- Those may vary the final result
- Longer sentences may allow more time for comprehension
- Front position: No time to understand, Final position: Problem of Recap
- Improvement:
 - Almost-the-same length of test materials
 - Almost-the-same position of the target words

Implications and Conclusion

Recap our hypotheses:

"The language proficiency of the L2 speakers are **positively** correlated to the response time."

Experiment:

- Eye-tracking Experiment
 - Understand the difference of puns processing of the participants through the fixation, regression and saccade time

FFG Test

Understand the difference of response times of the puns with the data from N400

Con't

- With the results in our experiment,
- Proved whether the language proficiency of the L2 speakers are **positively** correlated to the response time
- Explains the ambiguous understanding of different ads / slogan nowadays
 - Different language proficiency will take different time to construe the meaning of puns

Further research:

- The difference of the L1 and L2 speakers processing puns
- The difference between children and adults in pun processing

References

Guidi, A. (2012). Are pun mechanisms universal? A comparative analysis across language families. Humor, 25(3), 339–366.

Harley, T.A. (2008) The Psychology of language: from data to theory (3rd ed.)

Jackson, D. O. (2001). Key concepts in ELT. Language-related episodes. ELT journal, 55(3), 298-299.

Lucas, T. (2005). Language awareness and comprehension through puns among ESL learners. *Language Awareness*, 14(4), 221-238.

McHugh, T., & Buchanan, L. (2016). Pun processing from a psycholinguistic perspective: Introducing the Model of Psycholinguistic Hemispheric Incongruity Laughter (M. PHIL). Laterality: Asymmetries of Body, Brain and Cognition, 21(4-6), 455-483.

Sheridan, H., Reingold, E. M., & Daneman, M. (2009). Using puns to study contextual influences on lexical ambiguity resolution: Evidence from eye movements. Psychonomic Bulletin & Review, 16(5), 875–881.

Solska, A. (2012). The Relevance-Based Model of Context in Processing Puns. Research in Language,10(4). doi:10.2478/v10015-012-0001-0

Steinberg, D. D. (2001) An Introduction of Psycholinguistics. New York: Longman.

The End